Space S000125

Knaster-Kuratowski fan

Also known as: Cantor's leaky tent

For any a[0,1]a \in [0,1], let L(a)L(a) be the line segment from (a,0)(a,0) to p=(12,12)p = (\frac{1}{2}, \frac{1}{2}). Let C\mathcal{C} be the middle-thirds Cantor set in the unit interval, E\mathcal{E} the endpoints of the removed intervals and F=CE\mathcal{F} = \mathcal{C} \setminus \mathcal{E}. Define A={(x,y)L(c)  cE,yQ}A = \{(x,y) \in L(c)\ |\ c \in \mathcal{E}, y \in \mathbb{Q}\} and B={(x,y)L(c)  cF,y∉Q}B = \{(x,y) \in L(c)\ |\ c \in \mathcal{F}, y \not\in \mathbb{Q}\}. This space is X=ABR2X = A \cup B \subset \mathbb{R}^2 with the subspace topology.

The subspace X{p}X\setminus\{p\} obtained by removing the apex point is Punctured Knaster-Kuratowski fan.

Defined as counterexample #128 ("Cantor's Leaky Tent") in DOI 10.1007/978-1-4612-6290-9.

S125: Knaster-Kuratowski fan | π-Base